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We report on Monte Carlo studies of the elastic properties of the helix-coil wormlike chain model of
�-helical polypeptides. In this model the secondary structure enters as a scalar �Ising-like� variable that
controls the local chain bending modulus. We characterize the nonlinear elastic properties of these molecules
including their response to applied tensile forces and bending torques both individually and in combination. We
find a pronounced effect of applied torque on the extensional compliance of the molecule and a similar effect
of tension on the bending compliance. Finally we speculate that the strongly nonlinear response of �-helical
polypeptides to combinations of torque and force plays a role in allosteric transitions in proteins.
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I. INTRODUCTION

The mechanical properties of semiflexible biopolymers
such as F-actin are generally described by the wormlike
chain Hamiltonian �1,2�, which treats the filament as a one-
dimensional elastic continuum without internal structure. Ex-
periments based on single-molecule manipulations �3–10�
have demonstrated the essential validity of this coarse-
grained approach to the investigation of biopolymer statistics
and mechanical properties. Understanding both the scattering
function of such semiflexible polymers in dilute solution �11�
and the force extension relations �12� of single semiflexible
polymers are among the principal successes of this coarse-
grained description of these polymers. A simplification of
this nature, although valid in numerous contexts, must break
down under forces that are large enough to modify the local
structure of the polymer. For example the wormlike chain
Hamiltonian ignores the double-helical structure of DNA and
the local secondary structure of polypeptides. This local mo-
lecular structure controls the bending modulus of the poly-
mer and can be disrupted under applied stress.

This limitation of the wormlike chain �WLC� model is
becoming increasingly apparent as researchers probe the me-
chanical properties of biopolymers under larger applied
forces where such a coupling between local molecular struc-
ture and chain elasticity plays an important role �13,14�.
Such large forces are not only experimentally accessible but
are also biologically relevant in such processes as those as-
sociated with DNA looping �15,16� and in protein conforma-
tional change. An example of the latter process can be found
in the conformational change of the protein calmodulin that
involves the buckling of a single, solvent-exposed �-helical
domain upon the binding of Ca2+ ions �17–20�. A polymer
model of the �-helical domain that incorporates this nonlin-
ear elastic response of the chain is therefore required to ex-
plore conformation change. We expect that such a model as
presented here will be directly relevant to the equilibrium
mechanics of �-helical polypeptides and more broadly appli-
cable to stiff biopolymers having internal structure, such as
DNA.

Recently we �21,22� and others �16,23� proposed a mini-
mal extension of the wormlike chain called the helix-coil
wormlike chain �HCWLC� to describe the mechanics of
biopolymers with internal structure. This model couples the
conformational degrees of freedom of the polymer backbone
to localized structural transitions of the constituent mono-
mers by postulating that the local bending modulus of the
wormlike chain depends on the local degree of internal struc-
ture �the helix or coil variable�. For example, the bending
modulus of an �-helical polypeptide depends on the local
presence of secondary structure and the consequent hydrogen
bonding that substantially stiffens the chain. The fundamen-
tal result of this coupling is to make both the torque and
force response of the polymer highly nonlinear due to local-
ized denaturation events �loss of local secondary structure�
under applied force or torque. These denatured regions intro-
duce more compliant elements into the chain, leading to
abrupt changes in the effective moduli of the polymer at a
critical applied stress.

In this paper we examine, via Monte Carlo simulations,
the nonlinear response of the HCWLC to force, to torque,
and to the simultaneous application of both force and torque.
This simple model of biopolymers with internal structure
incorporates a nonlinear coupling between the response of
the molecule to applied torques and to tensile forces. This
nonlinear coupling is mediated by the secondary structure
variables. Thus the nontrivial response of the polymer to
combinations of force and torque is made possible by the
presence of an ordered �i.e., native� state of the chain. Below
we suggest that this nonlinear interaction between bending
torques and chain extension may play a role in the allosteric
changes frequently observed in natural proteins.

Finally the numerical work reported here complements
our previous analytic calculations of the extension and bend-
ing compliances of �-helical polypeptides. We can now
study features of the HCWLC model that are essentially in-
accessible in previous analytic treatments �22� that were
based on mean-field descriptions of the secondary structure
variables. Thus, we are better able to determine the mechani-
cal properties of weak helix formers, which admit large sec-
ondary structure fluctuations in equilibrium. We provide and
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test a Ginzburg criterion �24� to discuss the limits of validity
of the previously used mean-field approximation.

To briefly review the phenomenology of the model, we
reported a mechanical instability of the chain under bending
akin to a “buckling instability” in which a segment of an
�-helical polypeptide locally melts to form a denatured �ran-
dom coil� segment beyond a critical angle. At this point the
torque required to hold the chain at larger angles drops pre-
cipitously. Upon application of a tensile force to the
�-helical polymer we find four regimes of response. Arbi-
trarily small forces break the rotational isotropy of the mo-
lecular configurations by orienting the long axis of the mol-
ecule in the direction of the applied force. At the low forces,
the tension pulls out the small equilibrium undulations of the
stiff �-helical polymer in a manner identical to that of the
WLC. In the WLC model the extensional compliance of the
chain vanishes in the limit of large forces because each seg-
ment of the chain is inextensible. This is not the case for the
HCWLC. For short enough chains �quantified below� the
standard Marko-Siggia �12� plateau in which additional force
does not produce extension is replaced by what we term a
“pseudoplateau” characterized by the fluctuations of the
polymer into the random-coil or denatured state. Since the
random-coil sections of the chain are longer than the same
segments in their native, �-helical state, the biasing of the
fluctuations into the random coil leads to additional contour
length of the polymer. Finally in the fourth regime the chain
is completely denatured by the applied force and reaches a
true Marko-Siggia plateau upon further increasing the force.

The remainder of the paper is organized as follows. In
Sec. II we introduce the � helix Hamiltonian based on a
combination of the wormlike chain and the helix-coil model.
We also discuss the details of the Monte Carlo simulation.
The simulation results are analyzed in the Sec. III. We first
study the equilibrium properties of the polymer under no
applied forces or torques in Sec. III A. We then turn to the
bulk of our studies in examining the mechanical properties of
the chain under �i� applied torques and no tensile forces in
Sec. III B 1, �ii� applied forces but no torques in Sec. III B 2,
and �iii� the combination of both torques and forces in Sec.
III B 3. We summarize and discuss our results in Sec. IV.

II. THE HELIX-COIL WORMLIKE CHAIN MODEL

The wormlike chain �1,2� is the simplest coarse-grained
model for semiflexible polymers. It describes the single-
chain polymer statistics in terms of a Hamiltonian that asso-
ciates an energy cost with chain curvature by introducing a
bending modulus �. In terms of a discretized chain model
described by the set of monomeric tangent vectors t̂i, i
=0, . . . ,N−1 with N the degree of polymerization, the WLC
Hamiltonian may be written as

HWLC = ��
i=0

N−1

�1 − �t̂i · t̂i+1�� . �1�

The bending modulus � determines the thermal persistence
length of the chain, i.e., the distance along the chain over
which the tangent vectors decorrelate.

The response of a single chain to extensional forces has
been used to understand the deformational properties of
biopolymers and their aggregates �12,25,26�. To account for
the internal degrees of freedom along the chain a new set of
variables is needed. Workers have previously employed the
helix-coil �HC� model �27� in order to introduce such inter-
nal state variables along the arc length of the chain. This
model has been used to study a class of protein conforma-
tional transitions �28,29� in solution and under tension �30�.

The HC model Hamiltonian, which is used to study these
structural transitions, can be reduced to its simplest form by
assuming that the local structure of the chain is described by
a set of two-state variables si= ±1, i=0, . . . ,N. For the
�-helical chains of current interest we regard these two states
as the conformation of the segment in its native, �-helical
state �s= +1� and in a disordered, random coil state �s=−1�.

The elementary units of the chain as described by the
HCWLC model are not the amino acid monomers but rather
turns of the � helix since it is necessary to unambiguously
ascribe the presence or absence of secondary structure to
each elementary unit of the model. In practice we expect this
level of coarse graining to mean that each segment of the
chain �or elementary unit� is composed of �three monomers.

The coupling of the secondary structure variables to the
WLC tangent vectors is effected by introducing a bending
stiffness in the WLC Hamiltonian that depends on the local
degree of secondary structure. We choose

��s� = ��� if s = + 1,

�� if s = − 1.
� �2�

Due to the hydrogen bonding between turns of the � helix, it
is reasonable to expect that ��, the bending modulus in the
native state, is significantly larger than ��, the bending
modulus of the chain in the non-native, disordered state.
Simple estimates of this difference in bending moduli were
computed in �22�. Based on those estimates it is possible that
�� is as much as two orders of magnitude larger than �� for
�-helical polypeptides.

The Hamiltonian of the helix-coil wormlike chain may
then be written as

H = �w/2�
i=0

N−1

�1 − sisi+1� − h/2�
i=0

N

�si − 1�

+ �
i=0

N−1

��si��1 − �t̂i · t̂i+1�� , �3�

where �w is the free energy cost of a domain wall in the
secondary structure sequence. It is the natural logarithm of
the chain cooperativity parameter. h represents the free en-
ergy cost per monomer to be in the non-native �i.e., random-
coil� state, while �� and �� are the bending moduli of the
chain in the helix and coil phases as mentioned above. A
pictorial representation of the system is shown in Fig. 1.

The full Hamiltonian given by Eq. �3� has four constants
with dimensions of energy, �� ,�� ,h ,�w that can be fitted
from experiment. We measure all these energies in units of
kBT. We have disregarded the twist degree of freedom of the
molecule. Such twist degrees of freedom and the coupling of
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twisting and stretching modes of these chiral molecules have
been explored particularly with regard to the mechanical
properties of DNA �31,32�. Also in the present work we
evaluate the model in two dimensions. Full three-
dimensional variants of the calculation that incorporate tor-
sional modes as well as the twist-stretch coupling are cur-
rently under investigation �33�. We also ignore nonlocal
steric interactions between segments of the chain. We expect
these to not play a significant role in the predominantly or-
dered states of the molecule due to its long thermal persis-
tence length.

We performed Monte Carlo simulations of the HCWLC in
two dimensions using a standard Metropolis algorithm. The
system consists of a one-dimensional set of N lattice sites
having two variables: an Ising variable si= ±1 specifying the
presence or absence of secondary structure, and a continuous
angular variable �i describing the angle of the local chain
tangent vector t̂i with respect to the x axis. The number of
tangent vectors in the simulation is one less than the total
number of spins. The energy of a particular HCWLC con-
figuration is given by the Hamiltonian Eq. �3�.

We performed two classes of Monte Carlo moves: �i� at-
tempts to change the local secondary structure si→−si, and
�ii� tangent vector moves �i→�i±�� allowing the chain to
explore all conformations. We found that choosing ��
=0.01 allowed us to equilibrate the chain reasonably rapidly
while being small enough so that the discretization of the
chain conformations did not significantly affect the numeri-
cal results. This latter point was checked by a comparison to
runs with even smaller values of the angular variable up-
dates. We studied systems of sizes ranging from N=10 to
100 and saw only a small system-size dependence in the
sharpness of the transitions of the underlying spin variables.

Before taking data, we equilibrated the system by per-
forming a number of Monte Carlo moves that is greater than
four times the longest correlation time in the system. Be-
cause of their discrete nature the spin variables equilibrate
much faster than the angular variables. Due to the wide sepa-
ration of the time scales for the equilibration of the helix-coil

and angular variables, a more efficient Monte Carlo scheme
could be developed by updating the angular variables more
often than the secondary structure variables when deep in the
ordered phase of these secondary structure variables. We did
not pursue such improvements of the efficiency of the code.

We benchmarked our code by comparing our results to the
known equilibrium properties of the Ising model and the
Kratky-Porod model in the limit where we had artificially
frozen either the tangent vectors or the spin variables, respec-
tively. In these cases the HCWLC model reduces to these
well-studied cases.

III. RESULTS

A. Equilibrium properties: The radius of gyration

We first investigate an equilibrium property of the un-
stressed chain using the full HCWLC model by examining
its radius of gyration �11,34�. We note that the projection of
the polymer arc length along the average tangent vector of a
segment, i.e., the effective length of the segment depends on
the state of secondary structure. To account for this aspect of
the coarse-grained HCWLC polymer model we define a seg-
ment length that is a function of the secondary structure vari-
able sn via

	�s� = �	� if s = + 1,

	� if s = − 1,
� �4�

where, as the notation suggests, 	��	�. The length of a
segment increases when it loses its �-helical secondary
structure. Based on typical �-helical structures we estimate
that 	�=3	�. Unless explicitly stated otherwise, we fix the
ratio of segment lengths to this value. Furthermore, we take
the total contour length L of the chain with polymerization
index N to be N	�, the length of the fully straightened and
denatured molecule.

The separation vector between the ith and jth segments
along the chain is given by

R� ij = �
n=i

j−1

	�sn�t̂n, �5�

where 	�sn� is the length of the nth segment measured along
its mean chain tangent as defined above.

To compute the radius of gyration in our simulations we
first evaluate the center of mass of the polypeptide, which is
given by

R� c.m. =
1

N
�
j=1

N

�
i=1

j

	�si�t̂i. �6�

The radius of gyration is then evaluated by computing the
average

RG
2 =

1

N	�
j=1

N 
�
i=1

j

	�si�t̂i − R� c.m.�2� . �7�

We plot in Fig. 2 the radius of gyration as a function of h for
�w=10, and bending moduli ��=100 and ��=1 for an �N

FIG. 1. Schematic figure of an �-helical polypeptide and its
representation in the HCWLC. The upper figure shows an �-helical
polypeptide with one denatured segment. The dashed line represents
intramolecular hydrogen bonding. The lower figure shows the rep-
resentation of this molecular configuration in terms of the Ising-like
secondary structure variables �open circles for random coil seg-
ments and filled ones for �-helical ones� and the tangent vectors to
the segments of the chain �denoted by arrows�. Each basic unit of
the model �monomer� is shown between dotted lines.
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=10�-sized chain obtained using Monte Carlo simulations
�black dots�. These data are in excellent agreement with our
analytic calculations �solid line� �22�. The energy scale h is
the free energy cost of a polymer segment being in its non-
native �i.e., random-coil� state. Variations of h mimic the
modification of the solvent quality as is done in the denatur-
ation of proteins by the addition of, e.g., guanidinium �35�.
Figure 2 reflects the decrease in the radius of gyration with
an increasing thermodynamic driving force toward the native
��-helical� state of the molecule. This decrease is the result
of two competing effects: �i� each chain segment shrinks in
length upon adopting its native state �	�→	��, shortening
the radius of gyration, and �ii� the longer persistence length
in the native state ���→��� increases the overall radius of
gyration. For physiologically reasonable parameter values
we find that the former effect dominates so that the net result
is a decrease in RG as the polymer adopts its native state
structure.

Another effect of solvent quality is the change in the ef-
fective excluded volume interaction between segments of the
polymer. This effect is not included here. We expect that for
small values of the polymerization index N this effect of
solvent quality plays a subdominant role.

Similar behavior is seen in other measures of the polymer
size in solution such as the average squared end-to-end vec-
tor of the chain. For high chain cooperativity and h chosen so
that the chain is in either the all-helix or all-coil phase, we
find this quantity has the expected WLC form: �R2

=N2	2g�N	 / lp�, where g�x�=2�exp�−x�−1+x� /x2 and 	 is
either 	� or 	� for the all-helix or all-coil chains, respec-
tively. At intermediate values of h, the behavior of the
HCWLC is similar to the WLC but with a persistence length
and segment size that interpolate between those of the helix
and the random coil. This result also agrees with previous
analytic calculations �22�.

B. Mechanical compliances

1. Bending compliance

We begin our exploration of the mechanical properties of
the model by considering the response of the chain to exter-
nally applied torques in thermal equilibrium. These torques
act to constrain the tangent vectors of the ends of the mol-
ecule while not applying tensile stress. There are two conju-
gate thermal ensembles that can be studied to consider the
bending compliance. The first is a fixed bend ensemble in
which the angular deviation of the first and last chain tan-
gents is fixed, and the second is an ensemble in which the
tangent vectors of all chain segments are unconstrained and a
fixed torque is applied to the chain via force couples applied
to the first and the final chain segments. In the former en-
semble one can compute in closed form the thermally aver-
aged torque required to enforce the constraint on the chain
tangents. Here we expect the results of the simulations to
agree with these previous calculations. The response of the
system to a fixed torque, which is likely of more direct ex-
perimental interest, cannot be as simply determined. More-
over, the response of the chain to a combination of tensile
stress and bending torques cannot be computed analytically
in closed form. We address the more general problem of the
response of the polymer to a combination of applied forces
and torques in Sec. III B 3.

We consider first the fixed chain tangent ensemble. We
hold the first tangent vector fixed along the x̂ axis and con-
strain the last chain tangent to make a fixed angle 
 with
respect to the same axis. We numerically evaluate the con-
straining torque ��
� by computing the derivative of the free
energy with respect to the angle 
. In our simulations this is
effected by directly calculating the thermal average

��
� = 
��sN−1�sin�
 − �N−1�� . �8�

The results, which corroborate the analytic calculations,
are plotted in Fig. 3. At small values of the bending angle 
,
there is a linear dependence of the constraining torque on 
.
The � helix bends like a flexible elastic rod. At a certain
critical angle 
�, however, the constraining torque reaches a
maximum and then drops precipitously for angles 
�
� as
shown in Fig. 3. This dramatic collapse of the chain’s rigidity
is akin to the buckling instability of a macroscopic tube such
as a drinking straw. The mode of the localized failure though
is quite different. Here the failure is caused by the localized
disruption of the secondary structure. The breaking of the
hydrogen bonds at this denatured site introduces a weak link
allowing the molecule to bend at a lower torque. At 
=
�,
M, the fraction of the chain in the non-native state, abruptly
jumps to O�1/N�, demonstrating that, within the model, the
buckling failure is due to the creation of a single random-coil
segment along the chain that provides a region of greatly
reduced bending stiffness. The size of the created random-
coil section will remain on the order of N�
/�� so for a large
difference in bending moduli between the native and non-
native states of the chain, these “weak links” generically oc-
cupy a small fraction of the polymer. For instance, in the
example shown in Fig. 3 there is only one weak link created.

1  1.6 2.2 3 

10

14

18

22

h

R
2 g/N

 γ
2 <

FIG. 2. Radius of gyration of the HCWLC as a function of the
free energy cost per segment to transform to the random coil, non-
native state: h obtained from Monte Carlo simulations �plotted us-
ing black dots� as compared with the theory �22�. In this curve
��=100, ��=1, N=10, and �w=10. All the energy scales are mea-
sured in kBT and the error bars are smaller than the symbols in the
plot.
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The above behavior is seen in the parameter range ��w ,h�
consistent with the chain being in an all-helix state in ther-
mal equilibrium in the absence of applied torque. If the equi-
librium system is in a mixed helix-coil phase such behavior
is not observed. Instead we see a monotonic increase in the
bending torque for all end angles less than � as expected for
an elastic rod. At 
=� the torque measured in thermal equi-
librium is identically zero since one is averaging a signed
quantity �the projection of the torque vector out of the plane�
and the statistical weight of positive and negative torques
becomes equal. The average of the squared torque, however,
vanishes only at 
=0 modulo 2�. Since it is reasonable to
suppose that the chain bends in the plane defined by first and
last constrained chain tangents, one expects that our two-
dimensional results accurately capture the buckling instabil-
ity of the chain. We expect that the full three-dimensional
calculation would generate at least qualitatively similar re-
sults.

2. Extensional compliance

We now study the extensional compliance of �-helical
polypeptides, which is the most easily accessible mechanical
property of the chain by current experiments. We consider
the thermally averaged extension of the chain in the direction
of an applied force acting on one end of the tethered mol-
ecule. Based on previous mean-field calculations �22� we
expect there to be four force regimes where the extensional
compliance of the molecule is due to differing modes of
extension. At the lowest forces the principal effect of the
applied force is to orient the long axis of the molecule that is
typically much shorter than its own thermal persistence
length in the stiffer �-helical phase. At still higher forces, the
applied tension will begin to decrease the thermal population
of transverse undulations along the � helix and thereby in-
crease its mean length. This is the source of the extensional

compliance of the WLC. At still higher applied tensions
where these transverse undulations are severely depleted, we
expect additional tensile force to induce chain segments to
fluctuate into their more extended, random coil phase. This
small additional extension due to rare fluctuations into the
random coil provides a small additional compliance, leading
to a regime of slowly increasing chain length with increasing
tension—the “pseudoplateau” in the extension vs force
curve. Finally, at still higher forces we expect to denature the
chain and thereby liberate more stored length over a narrow
range of tension leading to a longer WLC with a lower ef-
fective persistence length. We now study the range of valid-
ity of these mean-field predictions and examine the exten-
sional compliance of the chain in a parameter regime where
this mean-field analysis fails.

In the presence of a tensile force F, the Hamiltonian of the
HCWLC may be written as

H = H0 − F�
i=0

N

	�si�cos��i� , �9�

where H0 is the HCWLC Hamiltonian in the absence of ex-
ternally applied forces as shown in Eq. �3�. In our Monte
Carlo simulations we apply a force of magnitude F and then
equilibrate the chain as described above. We calculate the
mean length of the chain as a function of the externally ap-
plied force using

L�F� =	�
i=1

N

	�si�t̂i · x̂� . �10�

In Fig. 4 we observe in the lower panel three of the four
extension regimes predicted by the mean-field calculation
beginning with the pulling out of transverse undulations in
the stiff � helix at small applied tensions F�F−. The lower
force F− is determined by the beginning of the first Marko-
Siggia plateau where the amplitude of transverse thermal un-
dulations of the all-�-helical polymer have been significantly
reduced. Because that reduction has an algebraic dependence
on applied force, it is not possible to unambiguously select a
critical force marking the onset of the plateau. It appears
reasonable, however, to insist that the plateau has been
reached when �dL /dF��1/	�

2 �
1, i.e., when the incremental
extension of the chain measured in monomer lengths �L /	�

is small for a change in force �F�1/	� set by the thermal
energy �kBT=1� divided by the same monomer size. In this
case we find the force associated with the plateau onset

F− � N2/3��
−1/3	�

−1 �11�

grows with the length of the chain. Longer chains require
larger forces to sufficiently pull out the equilibrium popula-
tion of transverse undulations and thereby reach the plateau
regime.

At larger tensions F�F− we enter the pseudoplateau �in
the lower panel of Fig. 4� where the molecule in the all-
helical phase has already asymptotically approached its
maximum length N	� as 1/�F��	�/kBT. The WLC predicts
the vanishing of the extensional compliance as the chain
reaches its maximum length; this would produce a true pla-

0  1  2  3  
0 

4 

 

8 

12

ψ

τ(
ψ

)

FIG. 3. Numerical torque vs angle data �filled points� for �w

=8.0, h=10.0, ��=100, and ��=1 compared with previous exact
calculations �13,14� �solid line� for an N=10 chain. The torque is
measured in units of kBT. The error bars are not shown where they
would be smaller than the size of the points.
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teau at these intermediate forces. This plateau, however, is
not flat in the HCWLC due to the fact that an increase in the
applied force enhances the fluctuations into the longer,
random-coil phase of the segments, which we refer to as the
pseudoplateau. The end of this plateau is marked by a sharp
lengthening transition at a value of force

F+ �
�w + h

�	
�12�

where �	=	�−	�. At tensions larger than F+ we observe
the force-induced denaturation of helical domains. F+ is de-
termined by balancing the free energy cost associated with
transforming a segment from � helix to random coil with the
work done by the external force during that transformation:
h+�w��	F+. The width of the pseudoplateau is controlled
by two forces, a force of onset F− and a maximum force F+
at which point the abrupt denaturation transition occurs. For
the appropriate parameter values these forces are marked by
dashed lines in the lower panel of Fig. 4.

Upon closer examination of Eqs. �11� and �12� one notes
that the existence of the intermediate-force pseudoplateau is
actually a finite-size effect; for a large enough polymeriza-
tion index N the pseudoplateau may vanish as F− becomes
greater than F+. The tension required to straighten the �
helix is large enough to denature the molecule. Since the
existence of the pseudoplateau requires that F−�F+, it will
be found only in chains where

N � 
h + �w

	��	
�3/2

��
2 . �13�

In the upper panel of Fig. 4 the above inequality is violated
so the pseudoplateau vanishes. For still less cooperative
chains �smaller �w� we find the chain in a mixed helix and
coil state and we obtain force extension curves similar to
those of the WLC results of Marko and Siggia �12�.

Typical �-helical polypeptides are quite short N�O�10�
and stiff ���O�102� so that one expects to observe this
pseudoplateau behavior quite generally. We see that, for the
parameters used to create the upper panel of Fig. 4, the cri-
terion for the presence of the pseudoplateau is not met and in
our Monte Carlo simulations we indeed observe no pseudo-
plateau for these values. When the criterion is met, as in the
case shown in the lower panel of Fig. 4, the mean-field ex-
ample, the pseudoplateau is evident.

In both panels of Fig. 4, however, the mean-field calcula-
tion �solid line� qualitatively agrees with the numerical data
�points�. That agreement is better for the more cooperative
system in the lower panel where �w=8.0 than in the system
shown in the upper panel where �w=0.1.

Examining Fig. 5 we see the breakdown of the mean-field
description of the force extension behavior of the HCWLC.
The domain wall energy �and hence the chain cooperativity
parameter� increases progressively from the top to bottom
panels of the figure. The numerical data are shown as points
and the mean-field theory force extension curve for those
chain parameter values is shown as the solid line. In the
upper panel the denaturation transition significantly deviates
from the mean-field theory. The mean-field theory success-
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=0.5, h=1.0, ��=4.0, ��=2.0, and N=20. In the lower panel the
parameters are �w=8, and h=1.5, and ��=100, ��=1, and N=10.
In each the mean length of the chain normalized by the maximum
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�intermediate-force flat region� for sufficiently long or uncoopera-
tive chains.
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fully predicts the midpoint of the transition, but is unable to
account for its width. As �w is increased in the middle panel
the mean-field theory better describes the data although it
still fails dramatically in the transition zone at reduced forces
of �6. Finally, at large enough values of the chain cooper-
ativity parameter ��w�8� the mean-field theory describes the
force-extension behavior of the chain with quantitative accu-
racy.

It is reasonable that the mean-field theory fails to accu-
rately describe the force-extension behavior of the polymer
where the chain cooperativity parameter �w is small since
one expects the fluctuations in the polymer’s secondary
structure to become significant in this limit. These fluctua-
tions are ignored in the mean-field calculation. Measurement
of the energy fluctuations of the chain in the Monte Carlo
simulation allows one to directly monitor the significance of
fluctuations.

Using these measurements of the energy fluctuations we
map the region of validity of the mean-field theory in the
parameter space spanned by �w and heff �defined below� as
shown in Fig. 6. To the right of the dashed line �the region
labeled MF� the energy fluctuations are small compared to
the mean energy and the mean-field theory holds. In the re-
gion to the left of this division the system is dominated by
large secondary structure fluctuations and large fluctuations
in its internal energy. Two traces of the total energy as a
function of Monte Carlo time representative of each region
are shown as insets. The ratio of the variance of the energy to
its mean value is �2.3 in the fluctuation-dominated regime.
In the mean-field regime this ratio is �10−3.

To better understand the breakdown of the mean-field
theory, we observe that, if the polymer were straight, the
effect of the force on the remaining secondary structure vari-
ables would be to simply shift the effective free energy cost
per segment to destroy the secondary structure from h to
heff=h−F�	; the cost of denaturing the segment is h but the

net work done by the chain upon extension under the exter-
nal force F is −F�	. We recall that the validity of the mean-
field theory requires only the suppression of secondary struc-
ture fluctuations. We then expect the mean-field theory to fail
where heff=h−F�	 is small, which for reasonable values of
h requires significant forces. Assuming that these forces have
quenched most of the contour fluctuations of the chain, we
take as an approximate criterion for the breakdown of the
mean-field theory the Ginzburg criterion for the one-
dimensional helix-coil model with an effective field heff.
Thus the mean-field theory is expected to hold when


si
2� − 
si�2


si�2 
 1. �14�

Neglecting boundary effects to restore the translational in-
variance along the chain and taking N large enough so that
we may consider only �1, the larger of the two eigenvalues
of the transfer matrix, this condition can be written as

�1��2�1/�h2�
���1/�h�2 
 1 �15�

where the larger eigenvalue, computed in �22�, is given by

�1 = �1 + e−heff� +
1

2
��1 − e−heff�2 + 4 exp�− 2�w − heff� .

�16�

This Ginzburg criterion given by the combination of Eqs.
�15� and �16� is shown in Fig. 6 as the dashed line. The filled
circles represent the numerically determined boundary be-
tween the mean-field- and fluctuation-dominated regimes ob-
tained directly from Eq. �14� using our Monte Carlo data. We
see that the above analytic expression correctly distinguishes
these two regimes.

Figure 6 makes clear that the mean-field theory holds in
the limit of high chain cooperativity as expected. We expect
that, if the chain parameters are chosen so that the mean-field
theory holds at zero force, there will not be significant fluc-
tuation corrections at the denaturation transition due to the
low dimensionality of the system.

3. Nonlinear coupling: Bending and extension

We now examine the nonlinear interaction between the
responses of the molecule to a combination of applied tensile
forces and bending torques. We consider two different en-
sembles in which we apply a force to the end of the chain
while simultaneously �i� constraining the end tangents to dif-
fer by an angle of 
, or �ii� applying a fixed torque to the end
tangent of the chain.

To explore the first of these two ensembles we set the
angles between the first and last tangents and the x axis to be,
respectively, �1=0 and �N=
. We use the numerical code to
compute

L�F,
� = �	�
i=1

N

	�si�t̂i · x̂��
�0=0,�N=


, �17�

which gives the mean length of the chain.
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FIG. 6. A map of the �w-heff parameter space of the helix-coil
degrees of freedom showing the region of validity of the mean-field
�MF� approximation as determined by the Ginzburg criterion. The
insets show the energy fluctuations over Monte Carlo steps in nu-
merical simulations of the two regimes.
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In Fig. 7 we plot two force extension curves for a
HCWLC having parameters ��=40, ��=2, �w=8, and h
=1.5. In both cases the initial chain tangent is constrained to
lie along the x̂ axis, the direction of the tensile force. In one
case �triangles� the final chain tangent is collinear with the
initial chain tangent so that 
=0, while in the second case
�circles� the final chain tangent makes an angle 
=� /2 with
the initial one.

We note that in the case of the initially bent chain �

=� /2� the tension-free mean length is smaller than that of
the straight chain �
=0�. This is simply due to the fact that,
in order to minimize bending energy, the thermally averaged
trajectory of the bent chain forms the arc of a semicircle and
therefore has a smaller projection along the x axis than the

=0 chain, which is fluctuating about a straight trajectory.
The nonzero values of the two chain lengths at zero applied
force is a consequence of our fixing the initial tangent vector
to lie along the x axis and breaking the rotational symmetry
of the problem. Since the native, �-helical state has a thermal
persistence length that is longer than the molecule, even at
zero force the molecule’s projection along the x axis is close
to the projected length of the straight and circular segments.

At low applied force we see that the bent chain has a
greater extensional compliance than the straight one. The 

=� /2 chain reaches its pseudoplateau more rapidly with in-
creasing force. The bending of the chain has shifted the equi-
librium constant between denatured and native states of the
segments so that under tension there are greater fluctuations
into the more extended denatured state in the bent chain than
in the straight one. This effect leads to the enhanced exten-
sional compliance of the chain in the bent state for tensile

forces that allow the chain to remain predominantly in its
native state. Once the chain denatures under further increases
in the force, however, the coupling between the extensional
compliance and end tangent constraint disappears since the
chain now has a severely reduced persistence length. With a
persistence length now much shorter than its own arc length,
the effect of the constrained end tangent plays a minimal
role, affecting only those segments of the chain within one
persistence length of the end tangent.

In fact, as one approaches arbitrarily high forces the effect
of the constrained end tangent becomes localized at the last
segment of chain regardless of the bending moduli of the
polymer so that its effect becomes negligible. In the limiting
case of infinite force there remains only the effect of the
constrained end itself, which decreases the length of the
chain by 	��1−cos 
�. The high-force regime is shown in
the inset of Fig. 7. There we see that for forces large enough
to partially denature the chain �beyond the pseudoplateau�
the independence of the extensional compliance on 
, the
angle of the end tangent. Additionally we note the
asymptotic difference in the lengths of the two chains related
to the constraint on the end tangent itself.

Finally, in the strongly fluctuating secondary structure re-
gime, we do not observe any effect on the extensional com-
pliance due to end tangent constraints. These data are not
shown. This is to be expected based on the reasoning pre-
sented above. Taken together, these results show that in the
well-ordered �-helical state, control of the end tangents of
the chain can be used to exert control over not only the mean
shape of the � helix, but also its mechanical compliances.
This control method, made possible by the existence of sec-
ondary structure, may be an avenue for the long-range con-
trol of protein mechanical properties in one part of the mol-
ecule via allosteric changes in another part.

The numerical data presented above do not directly probe
the force-torque coupling since we have measured the exten-
sional compliance in an ensemble of chains with fixed end
tangents. Clearly, in the constrained end tangent simulations
discussed above the constraint torques have a complicated
dependence on the extensional stress. In order to quantita-
tively probe the force-torque coupling it is necessary to work
in a fixed torque ensemble rather than a fixed angle one.
From the point of view of developing a coarse-grained me-
chanical description of the an �-helical rod, it is essential to
determine the generalized response of the rod to any combi-
nation of known forces and torques. To do this we now turn
to the statistical measurements of the force extension behav-
ior of the � helix made in the fixed torque ensemble.

In Fig. 8 we plot the extension L of the � helix vs applied
tension F for two different values of applied torque on the
end tangent of the molecule. The chain parameters are h
=10.0, �w=8.0, ��=100, ��=1, and the polymerization in-
dex is N=20. The values of the torque �in units of kBT� are
taken to be 1 and 10. The former value is taken to be in the
range of linear bending response of the polymer in the zero-
tensile-force case as can be seen by Fig. 3. The latter value is
chosen to be near the maximum torque that the molecule can
support without denaturing as shown again in Fig. 3. We note
from the figure that at large enough tensions �in this case for
F	� /kBT�20� the effect of the applied torque on the exten-
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FIG. 7. Force vs extension curves for HCWLC chain with con-
strained end tangents. The force vs extension is shown for chains
where the first tangent lies along the direction of the pulling force
while the second tangent makes an angle of 
=0 �triangles� or � /2
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the chain are ��=40, ��=2, �w=8, h=1.5, and N=20. Note that
the extensional compliance depends on the state of the final chain
tangent. The inset shows that the chain extension in the direction of
applied force saturates at high forces to different values as a result
of the constrained end tangent.
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sional compliance vanishes. This effect is once again related
to the destruction of secondary structure at sufficiently high
forces. Without the secondary structure the nonlinear cou-
pling between applied torque and the extensional compliance
of the molecule vanishes.

At lower values of the applied force we note the appear-
ance of a local minimum in the extension vs force curve of a
depth that increases with applied torque and a position that
decreases with increasing applied torque. The region to the
left of the local minimum where the extension decreases with
increasing force is an unstable region in the force-extension
curve that is created by the applied torque. The appearance
of this instability in the extension vs force curve is analogous
to the region of decreasing equilibrium torque with increas-
ing angle in Fig. 3. In this unstable region increasing force
actually leads to a decreasing extension of the polymer.

The underlying cause of this instability can be understood
as follows. At no applied tension the fixed torque bends the
molecule so that its thermally averaged conformation is that
of an arc of a circle. Unlike in the case of the constrained end
tangents �data shown in Fig. 7� the particular arc of the circle
is not fixed by the constrained tangents but is rather deter-
mined by energy minimization, taking into account the ap-
plied torque and the effective persistence length of the chain.

At small tensions the applied force has two effects on the
chain. First the circular arc, which is the average shape of the
molecule, extends along the x axis in response to the force.
Second, the applied tension shifts the equilibrium between
the native and denatured states of the individual segments
toward the more flexible denatured state. Since the molecule
is rendered more flexible under the applied tension its mean
shape with the same applied torque becomes more bent. This
further bending reduces the extension of the molecule along
the x axis. The reduced effective thermal persistence length

also generates a larger population of transverse thermal un-
dulations along this mean shape. These undulations further
reduce the projected arc length of the molecule. The numeri-
cal data show that these two shortening effects dominate
over the simple stretching of the mean molecular trajectory
resulting in a seemingly paradoxical shortening the molecule
under applied force.

We can further explore this effect by examining the sec-
ondary structure order parameter m, which gives the thermal
average of the secondary structure variables of the chain and
is defined by Eq. �18�:

m =
1

N
�
k=1

N


sk� . �18�

The secondary structure order parameter takes values in the
range 1�m�−1 where a value of +1 represents an all-helix
configuration of the molecule while −1 represents a com-
pletely denatured chain.

In Fig. 9 we plot this secondary structure order parameter
as a function of the applied torque for three different values
of applied tension. As is the case in all systems studied in
this article, the molecule with no applied forces or torques
exists in nearly perfect �-helical state in thermal equilibrium.
For smaller applied torques we note that m decreases mono-
tonically. At a critical value of the applied torque ��, m be-
gins to drop much more dramatically until it saturates near
−1, a completely denatured chain. The value of ��, the criti-
cal torque, is a strongly decreasing function of the applied
tension. At high tensions much less torque is required to
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FIG. 8. The extension vs force curves for the HCWLC chain
under a fixed torque applied to the last chain segment. The model
parameters are given by h=10.0, �w=8.0, ��=100.0, ��=1.0, and
the applied torques are � /kBT=1.0 �squares� and 10.0 �circles�. The
dashed lines are guides to the eye.
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FIG. 9. The torque-induced denaturation of the � helix under
applied tension. The secondary structure order parameter m is plot-
ted against the applied torque on the polymer for chains under vari-
ous tensile stresses. The pretensioning of the chain shifts the free
energy difference between the native and denatured states of the
molecule thereby weakening its effective bending modulus. The
chain parameters are h=3.0, �w=8.0, ��=100, ��=1. The dashed
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denature the chain than at lower tensions. This rapid decrease
in �� with increasing tensile force supports our description of
the underlying cause of the instability seen in the extension
vs force curves under constant applied torque �Fig. 8�.

The appearance of this instability in the force-extension
curves under applied torque suggests an interesting applica-
tion to the understanding of the allosteric properties of pro-
teins. If the �-helical polymer is mechanically coupled to
another elastic element under tension in a macromolecule,
then the application of torque to the � helix can induce a
discontinuous jump in the extension of the helix as this mo-
lecular subunit is put into an unstable region of its force
extension curve by the applied torque. We expect the � helix
to extend past the unstable region in the force-extension
curve and equilibrate at a new length at some part on the
monotonically increasing region of the extension vs force
curve.

IV. CONCLUSIONS

We have numerically explored the nonlinear elastic re-
sponse of the HCWLC model for �-helical polypeptides to a
combination of applied forces and torques. Our Monte Carlo
simulations of the extensional compliance of the polymer
agree satisfactorily with previous analytic calculations where
the mean-field theory is expected to hold as determined by a
Ginzburg criterion. The response of the polymer to applied
torque at zero tension also agrees with the analytic calcula-
tions; this is to be expected as the force-free partition func-
tion of the system can be computed exactly.

The typical structure of the extension vs force curve is
essentially that of two WLC curves �one for the native state
at low tension and one for the denatured state at high ten-
sion� that are separated by the pseudoplateau region charac-
terized by small fluctuations of the chain segments into the
denatured state. Using the Monte Carlo simulations we have
examined regions of parameter space where this typical
structure of the curve is changed. For long enough chains
�large N� the pseudoplateau vanishes showing that this fea-
ture is a finite-size effect. We have also studied the force-
extension behavior of the chain in those regions of parameter
space where the mean-field model clearly fails. We have
found a much smoother crossover from short, stiff helical
configurations to longer and more flexible denatured states.
This is a reasonable model for weak helix formers. In this
fluctuation-dominated regime we find that the equilibrium
extension of the chain is well described by a WLC with a
persistence length that interpolates between its value in the
helix and coil states.

The Monte Carlo calculations provide a nonperturbative
approach to investigating the nonlinear coupling between re-
sponse of the chain to combinations of applied tensile forces
and bending torques.

We find that applied torque qualitatively changes the ex-
tension vs force curves of the molecule as long as these
torques are not so large as to denature a large fraction of the
chain. This qualitative change in the extension vs force
curves due to applied torque persists to a high force limit
where the tensile force finally denatures the molecule. Simi-

larly, constrained end tangents can affect the extensional
compliance of the molecule and its mean length. The under-
lying cause of this nonlinear coupling between the bending
and extensional compliances of the molecule is that both
applied torque and force shift the equilibrium between the
native state and denatured regions of the � helix and thus
affect the mechanical properties of the molecule.

One interesting consequence of this coupling is that it is
possible to use applied torques or constraints on the end
tangents to dramatically modify both the equilibrium length
of an � helix under tension and its extensional compliance.
In fact applied torque can generate discrete shifts in the equi-
librium length under tension; this mechanism for discrete
shifts in molecular architecture may help to elucidate the
underlying dynamics associated with allosteric transitions in
proteins.

Before such detailed modeling of protein conformational
change can be attempted, or any other application of this
theory to physical systems, a number of physiologically rel-
evant parameter values must be determined. The most diffi-
cult of these involve determining the complex intramolecular
forces and internal geometry of proteins. The more simple
involve fixing the parameter values that describe the single �
helix that is the focus of the current work. Determining these
basic internal energy scales of an � helix allows one to make
quantitative predictions for single-molecule manipulation ex-
periments �38,39� involving simple �-helix formers.

The appropriate energy scales h and �w that describe typi-
cal �-helical polypeptides under physiological conditions
have been estimated to be h�1.5 and �w�7 for certain
chemical systems �36,37�. More generally we expect these
energy scales to be of the same order of magnitude for all
secondary structure forming polypeptides. For such param-
eters and polypeptides of no more than N�O�10� turns it
appears from our Ginzburg criterion that the chain is typi-
cally well described by the previous mean-field approxima-
tion. The model examples computed in this paper use param-
eters that are all within expected physiological bounds.

Taken in combination with the previous analytical treat-
ments, these Monte Carlo calculations provide a nearly com-
plete description of the mechanical properties of the
HCWLC model for �-helical polypeptides. It remains only to
develop a full, three-dimensional description of the polymer
that incorporates the torsional degrees of freedom into the
problem as well as to address the role of chemical heteroge-
neity in order to develop a complete and rather general equi-
librium description of these biopolymers.
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